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Abstract
Here we explore the link between the moments of the Laguerre polynomials
or Laguerre moments and the generalized functions (as the Dirac delta-
function and its derivatives), presenting several interesting relations. A useful
application is related to a procedure for calculating mean values in quantum
optics that makes use of the so-called quasi-probabilities. One of them, the
P-distribution, can be represented by a sum over Laguerre moments when
the electromagnetic field is in a photon-number state. Consequently, the
P-distribution can be expressed in terms of Dirac delta-function and derivatives.
More specifically, we found a direct relation between P-distributions and the
Laguerre factorial moments.

PACS numbers: 02.30.Gp, 02.30.Lt, 42.50.−p

1. Introduction

The probability finding, as a measurement outcome, n photons in the field state ρ̂ is given by
Tr (ρ̂|n〉〈n|) (ρ̂ is a traceclass operator and |n〉 is the eigenstate of the photon-numberoperator).
So, in a field prepared in a coherent state |α〉 (ρ̂ = |α〉〈α|), where α is a complex number and
|α|2 is the intensity of the field, or the mean photon number, then Tr(ρ̂|n〉〈n|) = |〈n|α〉|2.

On the other hand, from a formal point of view the state |α〉 is used to map a q-number
operator Ô(a, a†) (a and a† are destruction and creation operators of photons with respect
to the number state |n〉, n = 0, 1, 2, . . .) to a c-number function. The trace operation
Tr(ρ̂|α〉〈α|) = 〈α|ρ̂|α〉 = Qρ̂ (α, α

∗) defines the Husimi distribution, or Q-distribution,
for state ρ̂ (actually this is a map: ρ̂ ⇒ Qρ̂ (α, α

∗), a → α, a† → α∗).
The mean value of an operator Ô(a, a†) can be written as

Tr(ρ̂Ô) =
∫
O(α, α∗)Pρ̂(α, α

∗) d2α (1)
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where O(α, α∗) = 〈α|Ô |α〉 (this is also a map: Ô ⇒ O(α, α∗)) and Pρ̂(α, α
∗) is the

Glauber–Sudarshan or P-distribution, related to Qρ̂ (α, α
∗) through

Pρ̂(α, α
∗) = exp

(
− ∂2

∂α∂α∗

)
Qρ̂(α, α

∗).

The distributions Qρ̂(α, α
∗) and Pρ̂(α, α

∗) are quasi-probabilities, the former is always a
smooth and well-behaved function of its arguments while the latter, depending on the state ρ̂,
may be a regular function or a generalized function (GF) as is the case for ρ̂ = |n〉〈n|.

For a field in state ρ̂ = |n〉〈n| the probability to find n photons in a coherent state |α〉〈α| is
the same as the Q-distribution for state |n〉〈n|, being a Poisson distribution in variable n with
mean value |α|2 [1],

Qn(|α|2) = |〈n|α〉|2 = exp(−|α|2)|α|2n
n!

(2)

a smooth and well-behaved function of its argument. However, the P-distribution is a quite
singular function, as was originally reported in the classical papers of Glauber [2] and
Sudarshan [3] and more recently reviewed by Wünsche [4], who found new relations and
representations for the P-distribution. Working on this same problem of representing the
P-distribution, we obtained several results which we did not find in the current literature,
relating the Laguerre moments and Laguerre factorial moments to GFs. We also derived a
direct relation between the P-distribution and the Laguerre factorial moments. These results
are reported in this paper.

We begin by reminding, with some examples, how the Dirac delta-function arises in
mathematical physics [5–10]:

(I) Certain sequences of functions defined on R, fn(x), n = 1, 2, 3, . . . are well behaved
(continuous with continuous derivatives to all orders) in a domain I; however, they cease
to exist as such when n → ∞, acquiring meaning as a continuous linear functional
Tf φ ≡ 〈f, φ〉 = ∫

I f (x)φ(x) dx that maps each continuous test function φ(x) (φ ∈ �,
� is a linear vector space) onto a complex number. So, the functional denoted as Tf (or
simply f ) is called the distribution or GF. For instance, the functions

n√
π

e−n2/x2 n

π

1

1 + n2x2

sin nx

πx
(3)

although being continuous with continuous derivatives to all orders for any finite integer n, no
longer exhibit this property in the limit n → ∞, thus no longer belong to the class of regular
functions. All the examples in (3) converge to the so-called Dirac delta-function δ, in reality
a GF, to be referred to as the Dirac distribution (DD)

δ(x) = lim
n→∞

n√
π

e−n2/x2 = lim
n→∞

n

π

1

1 + n2x2
= lim

n→∞
sin nx

πx

defined by the functional〈
Tδa , φ

〉 = lim
n→∞

∫
I
δn(x − x0)φ(x) dx = φ(x0)

where δn(x) stands for any one of the functions displayed in (3) and φ(x) is a test function.
(II) From Sturm–Liouville theory we know that a class of second-order differential

equations accept, as solution, orthogonal polynomialsPn(x) that form a complete set, meaning
that any piecewise smooth and bounded function f (x) defined on I (x ∈ I ) can be expanded
in terms of the Pn(x) (the weight function and normalization factors are included in it),

f (x) =
∑
n

cnPn(x)



Laguerre moments and generalized functions 3537

the coefficients are obtained by integration,

cn =
∫
I
f (x)Pn(x) dx

and
∞∑
n=0

Pn(x)Pn(x
′) = δ(x − x ′)

is the completeness property of the polynomials. If the point 0 is contained in I, then setting
x ′ = 0 in the previous equation, the DD becomes equal to an infinite weighted sum of
polynomials,

∞∑
n=0

Pn(0)Pn(x) = δ(x).

Concerning the weighted Laguerre polynomials, Pn(x) = e−x/2Ln(x), which are defined
on [0,∞) with Pn(0) = 1, one notes that the infinite sum expansion

∞∑
n=0

Ln(x) = δ+(x) (4)

is a representation of a GF (we will come back to this point in the next section, with a proper
demonstration)3. The GF on the right-hand side (RHS) of equation (4) is related to the Dirac
distribution ∫ ∞

0
δ+(x)φ(x) dx = lim

ε→0+

∫ ∞

0
δ(x − ε)φ(x) dx = φ(0) (5)

since GFs are properly defined in open intervals.
The infinite sums of polynomials and moments are useful for a certain class of problems,

as we will see in section 4. In what follows, we shall consider the associated Laguerre
polynomials Lα

n(x), whose generating function (GEF) is

G(x, t, α) = e− xt
1−t

/
(1 − t)α+1 (6)

since

G(x, t, α) =
∞∑
n=0

Lα
n(x)t

n |t| < 1 (7)

where t is a complex variable in the open disc of radius |t|, t ∈ Dt = {t ∈ C | 0 � |t| < 1}.
In section 2 we present some lemmas involving the ordinary Laguerre polynomials and

the theorem for the Laguerre moments, whereas in section 3 we extend the results to the
associated Laguerre polynomials. In section 4 we make use of previous results and obtain an
expression for the P-distribution in terms of either the Laguerre factorial moments or the GFs.
In section 5 we expose our conclusions.

2. The ordinary Laguerre polynomials and moments

Initially, we shall consider the ordinary Laguerre polynomials (α = 0), L0
n(x) ≡ Ln(x),

where Ln (0) = 1. If we extend the domain of t to include the additional point t = +1 in

3 Here the δ+(x) should not be confused with the distributions δ± = δ
2 ± 1

2πi vp
1
x

defined in [6], p 91, where vp

stands for the Cauchy principal value.



3538 S S Mizrahi and D Galetti

equations (6) and (7) then D′
t = {Dt , 1}; one verifies that at this point (since t = |t| eiϕ , |t| = 1

and ϕ = 0) the GEF (6) becomes

lim
t→1−

G(x, t, 0) = lim
ε→0+

e− x
ε

ε
=
{

0 for x > 0
∞ for x = 0

. (8)

Thus G(x, 1, 0) is no longer a regular function in the usual sense, it becomes quite singular at
x = 0. Let us look more closely at GEF (6) and analyse its properties:

Lemma 1. For x ∈ R+, R+ ≡ (0,∞), the α = 0 GEF G(x, 1, 0) can be represented by the
GF, equation (5),

G(x, 1, 0) = δ+(x). (9)

Proof. Multiplying G(x, t, 0) by a piecewise smooth test function φ(x), with φ ∈ R and
x ∈ R+, integrating∫ ∞

0

e− xt
1−t

(1 − t)
φ(x) dx

performing the change of variable x = y(1 − t)/t and considering the limit t → 1−, we get

lim
t→1−

∫ ∞

0
e−y 1

t
φ

(
1 − t

t
y

)
dy = φ(0)

which is the main property of the GF, thus

lim
ε→0+

∫ ∞

0
G(x, 1 − ε, 0)φ(x) dx = φ(0) (10)

and equation (9) is justified, i.e., limt→1− G(x, t, 0) is a representation of the GF. �

Symbolically, equation (10) can be written as

G(x, 1, 0)φ(x) = φ(0) or δ+(x)φ(x) = φ(0)

which is a well-known property of the DD, omnipresent in mathematical physics textbooks
[6, 9, 10].

As the summation
∑N

n=0 Ln(x) is a regular function for any finite N, we may ask: does
the infinite summation go to a GF? Or, is the equality

∑∞
n=0 Ln(x) = δ+(x) true? Before

answering that question we first recall the following theorem of the Laguerre polynomials (we
do not present the demonstration since it can be found in the usual textbooks [11]):

Theorem 1. If the real function f (x), defined in the interval [0,∞), is piecewise smooth in
every subinterval [x1, x2], where 0 � x1 < x2 < ∞ and if the integral∫ ∞

0
e−xxα [f (x)]2 dx

is finite, then the series
∞∑
n=0

cn,αL
α
n(x)

with coefficients

cn,α = n!

"(n + α + 1)

∫ ∞

0
e−xxαf (x)Lα

n(x) dx
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converges to f (x) at every continuity point of f (x). At a discontinuity point x0 the series
converges to

1

2
lim
ε→0

[f (x0 + ε) + f (x0 − ε)].

For α = 0 we have

f (x) =
∞∑
n=0

cnLn(x) (11)

with

cn =
∫ ∞

0
e−xf (x)Ln(x) dx. (12)

The Laguerre polynomials are defined such that Ln(0) = 1, implying that f (0) = ∑∞
n=0 cn;

so we propose

Lemma 2. From equation (12) and for x ∈ R+ ≡ (0,∞) we obtain
∞∑
n=0

Ln(x) = δ+(x). (13)

Proof. Summing over all n on both sides of equation (12) and interchanging the order of
summation and integration, we get

∞∑
n=0

cn = f (0) =
∫ ∞

0
e−xf (x)

( ∞∑
n=0

Ln(x)

)
dx

so we verify equation (13). �

We can also verify equation (13) by using a recurrence relation of the Laguerre polynomials
and a property of the DD:

Corollary 1. From the recurrence relation of the Laguerre polynomials

xdxLn(x) = nLn(x) − nLn−1(x) n = 1, 2, 3, . . . (14)

where dx
.= d/dx, follows the known relation of the DD

xdxδ+(x) = −δ+(x) (15)

for
∑∞

n=0 Ln(x) = δ+(x).

Proof. Summing both sides of equation (14) over n, from 1 to N, we get
N∑
n=1

nLn(x) = xdx

N∑
n=1

Ln(x) +
N∑
n=1

nLn−1(x)

or
N∑
n=0

nLn(x) = xdx

N∑
n=0

Ln(x) +
N∑
n=0

(n + 1)Ln(x)

then

xdx

(
N∑
n=0

Ln(x)

)
= −

N∑
n=0

Ln(x).

Considering N → ∞ we recognize equation (15) for
∑∞

n=0 Ln(x) = δ+(x). �
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Therefore, we can write

G(x, 1, 0) =
∞∑
n=0

Ln(x) = δ+(x). (16)

We now give some relations involving the GFs that will be necessary to demonstrate a
useful theorem. As a preliminary, we

(i) write in short δ(n)+ (x)
.= (dx)

nδ+(x) (with δ
(0)
+ (x)

.= δ+(x));
(ii) assume limx→0

(
x
∑∞

n=0 Ln(x)
) .= 0 and limx→0

(
x (dx)

n
∑∞

m=0 Lm(x)
) .= 0, thus

lim
x→0

xδ(n)+ (x) = lim
x→0

x (dx)
n G(x, 1, 0) = 0; (17)

(iii) introduce the bracketed terms
[
xδ

(1)
+ (x)

]
,
[
xδ

(2)
+ (x)

]
, . . . ,

[
xδ

(n)
+ (x)

]
as GFs;

(iv) define the functional([
xδ(n)+ (x)

]
, φ
) .=

∫ ∞

0

[
xδ(n)+ (x)

]
φ(x) dx

where φ(x) is a regular piecewise and bounded test function in R+.

Example 1. For n = 1, the functional is∫ ∞

0

[
xδ(1)+ (x)

]
φ(x) dx =

∫ ∞

0
δ(1)+ (x)(φ(x)x) dx = −

∫ ∞

0
δ+(x)[ dx(φ(x)x)] dx

= −
∫ ∞

0
δ+(x)(xdxφ(x) + φ(x)) dx =

∫ ∞

0
(−δ+(x))φ(x) dx = −φ(0).

or in symbolic notation[
xδ(1)+ (x)

] = −δ+(x) (18)

the term in the brackets is reduced to the GF multiplied by −1.

Example 2. For n = 2,∫ ∞

0

[
xδ(2)+ (x)

]
φ(x) dx =

∫ ∞

0
δ(2)+ (x) (φ(x)x) dx = (−1)2

∫ ∞

0
δ+(x)

[
(dx)

2 (φ(x)x)
]

dx

=
∫ ∞

0
δ+(x)

[
x(dx)

2φ(x) + 2dxφ(x)
]

dx = 2
∫ ∞

0
δ+(x) [dxφ(x)] dx

=
∫ ∞

0

(−2δ(1)+ (x)
)
φ(x) dx = 2φ′(0)

therefore, in symbolic notation[
xδ(2)+ (x)

] = −2δ(1)+ (x). (19)

Remark 1. The bracket [xδ+(x)] = 0, since∫ ∞

0
[xδ+(x)]φ(x) dx =

∫ ∞

0
δ+(x)[φ(x)x] dx = 0.

The general term
[
xδ

(n)
+ (x)

]
is obtained by induction:

Lemma 3. For x ∈ R+, the factor (−x) in
[
(−x)δ

(n)
+ (x)

]
acts as a first-order derivative on

δ
(n)
+ (x), [

xδ(n)+ (x)
] = −nδ(n−1)

+ (x) n = 1, 2, 3, . . . . (20)
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Proof. From examples 1 and 2 we have
[
xδ

(1)
+ (x)

] = −δ+(x) and
[
xδ

(2)
+ (x)

] = −2δ(1)+ (x).

For
[
xδ

(3)
+ (x)

]
we use this last equation,[

xδ(3)+ (x)
] = dx

[
xδ(2)+ (x)

]− δ(2)+ (x) = dx

(−2δ(1)+ (x)
)− δ(2)+ (x) = −3δ(2)+ (x) (21)

and so forth for higher order derivatives, so equation (20) stands for any positive integer n.
�

We can generalize this result for higher powers of x through

Lemma 4. For x ∈ R+, any positive integer p, and assuming relation (20), it follows that in[
(−x)pδ

(n)
+ (x)

]
the factor (−x)p acts as a pth-order derivative multiplied by a constant,

[
xpδ(n)+ (x)

] =
{
(−1)p n!

(n−p)!δ
(n−p)
+ (x) for n � p

0 for n < p.
(22)

Proof. Since
[
xδ

(n)
+ (x)

] = −nδ
(n−1)
+ (x) then[

x2δ(n)+ (x)
] = [x(−nδ(n−1)

+ (x)
)]

= −n
[
xδ(n−1)

+ (x)
] = −n (−n + 1) δ(n−2)

+ (x) for n � 2.

However,
[
x2δ

(1)
+ (x)

] = − [xδ+(x)] = 0, where the second equality follows from remark 1.
Repeating this procedure for any positive integer p, we verify equation (22). �

Lemma 5. For the differential operator

$(x)
.= −((1 − x)dx + xd2

x

)
the following equation[

$(x)δ(n)+ (x)
] = (n + 1)

(
δ(n+1)

+ (x) − δ(n)+ (x)
)

(23)

holds for n = 0, 1, 2, . . . .

Proof. Setting n = 0 in equation (23) and by using relation (22) we get

[$(x)δ+(x)] = −([(1 − x)δ(1)+ (x)
]

+
[
xδ(2)+ (x)

])
= −

(
δ(1)+ (x) − (−δ+(x)) +

(
−2!

1!
δ(1)+ (x)

))
= δ(1)+ (x) − δ+(x). (24)

Following the same procedure for n � 1 we get equation (23). �

Lemma 6. For any positive integer s we have

[
($(x))s δ(r)+ (x)

] =
[

s∏
k=1

(r + k)

]
δ(s+r)

+ (x) −

s−1∏

k=1

(r + k)

s∑
j=1

(r + j)


 δ(s+r−1)

+ (x)

+


s−2∏

k=1

(r + k)

s−1∑
j=1

(r + j)

s−1∑
l=j

(r + l)


 δ(s+r−2)

+ (x)

−

s−3∏

k=1

(r + k)

s−2∑
j=1

(r + j)

s−2∑
l=j

(r + l)

s−2∑
m=l

(r + m)


 δ(s+r−3)

+ (x) + · · ·

+

[
(−1)s

1∑
j=1

(r + j)

1∑
l=j

(r + l) · · ·
1∑

n=m

(r + n)

︸ ︷︷ ︸
product of s summation symbols

]
δ(r)+ (x). (25)
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Proof. Starting with equation (23) and applying $(x) successively, by induction we arrive at
equation (25). �

We now define the Laguerre moments

Ms(x, 0)
.=

∞∑
n=0

nsLn(x) (26)

and propose the following theorem.

Theorem 2. For any positive integer s and x ∈ R+, the moments Ms(x, 0) can be expanded
in terms of GFs as

Ms(x, 0) =
s∑

l=0

cs,lδ
(l)
+ (x) (27)

with the coefficients given by

cs,l = (−1)s−l l!
l+1∑
j=1

j

l+1∑
k=j

k · · ·
l+1∑
n=m

n.

︸ ︷︷ ︸
product of s−l summation symbols

(28)

Proof. The eigenvalue equation for the Laguerre polynomials is

$(x)Ln(x) = nLn(x). (29)

Summing both sides of the equation over n from 0 to ∞ gives the first moment,

M1(x, 0) =
∞∑
n=0

nLn(x)

= [$(x)δ+(x)] = δ(1)+ (x) − δ+(x)

(30)

where we used equation (24) to obtain the second equality. By applying s − 1 times $(x) on
both sides of equation (29) we obtain

($(x))s Ln(x) = nsLn(x)

summing over n we get the sth-order moment

Ms(x, 0) =
∞∑
n=0

nsLn(x) = [($(x))s δ+(x)].

Setting r = 0 in equation (25) we get

Ms(x, 0) = s!δ(s)+ (x) − (s − 1)!


 s∑

j=1

j


 δ(s−1)

+ (x) + (s − 2)!


 s−1∑

j=1

j

s−1∑
k=j

k


 δ(s−2)

+ (x)

− (s − 3)!


 s−2∑

j=1

j

s−2∑
k=j

k

s−2∑
m=k

m


 δ(s−3)

+ (x) + · · · + (−)sδ+(x)

=
s∑

l=0

[
(−1)s−l l!

l+1∑
j=1

j

l+1∑
k=j

k · · ·
l+1∑
n=m

n

︸ ︷︷ ︸
product of s−l summation symbols

]
δ(l)+ (x) =

s∑
l=0

cs,lδ
(l)
+ (x).

�
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Example 3.

M2(x, 0) = [$(x) [$(x)δ+(x)]] = [$(x)
(
δ(1)+ (x) − δ+(x)

)]
= 2

(
δ(2)+ (x) − δ(1)+ (x)

)− (δ(1)+ (x) − δ+(x)
)

= 2δ(2)+ (x) − 3δ(1)+ (x) + δ+(x)

(31)

proceeding analogously we get

M3(x, 0) = 6δ(3)+ (x) − 12δ(2)+ (x) + 7δ(1)+ (x) − δ+(x) (32)

and

M4(x, 0) = 24δ(4)+ (x) − 60δ(3)+ (x) + 50δ(2)+ (x) − 15δ(1)+ (x) + δ+(x). (33)

It can be verified that
s∑

l=0

cs,l = 0. (34)

2.1. The Laguerre factorial moments

The Laguerre factorial moment of order s, associated with the ordinary Laguerre polynomials,
is defined as

Fs(x, 0)
.=

∞∑
n=s

n(n − 1)(n − 2) · · · (n − s + 1)Ln(x) =
∞∑
n=s

n!

(n − s)!
Ln(x) (35)

and it is related to the Laguerre moments through

Fs(x, 0) =
s∑

r=1

S(r)
s Mr (x, 0) (36)

where the coefficients S(r)
s are the Stirling numbers of the first kind [12]4. By substituting

equation (27) into (35) and after summing over the coefficients we arrive at a simple expression
for the factorial moments in terms of ultradistributions,

Fs(x, 0) = s!
s∑

r=0

(−1)s−r

(
s

r

)
δ(r)+ (x). (37)

3. The associated Laguerre polynomial and moments

Lemma 7. For α a positive integer and x ∈ R+, the equation
∞∑
n=0

Lα
n(x) = (1 − dx)

α δ+(x) (38)

holds and for t = 1 the GEF also becomes

G(x, 1, α) = lim
t→1

e− xt
1−t

(1 − t)α+1 = (1 − dx)
α δ+(x). (39)

4 The Stirling numbers of the first kind have the properties S
(0)
s = δs,0 and

∑s
r=1 S

(r)
s = 0. The inverse relation is

Mr (x, 0) =∑r
l=0 S(l)

r Fl (x, 0) where S(l)
r are the Stirling numbers of the second kind.
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Proof. Considering the following properties of the Laguerre polynomials, [13, 14]

Lα
n(x) = (−dx)

α Ln+α(x) and (dx)
αLn+α(x) = (−1 + dx)

α Ln(x)

it follows that

Lα
n(x) = (1 − dx)

αLn(x) (40)

and summing both sides of equation (40) over n from 0 to ∞ one gets equation (38).
Concerning equation (39), looking at G(x, t, α), equation (7), one can easily verify

that

G(x, t, α) = (1 − ∂x)
αG(x, t, 0) (41)

(∂x ≡ ∂/∂x) thus

lim
t→1−

G(x, t, α) = (1 − dx)
α lim
t→1−

G(x, t, 0) = (1 − dx)
αδ+(x)

(the second equality follows from lemma 1) so verifying equation (39). Therefore, one
arrives at

G(x, 1, α) =
∞∑
n=0

Lα
n(x) = (1 − dx)

αδ+(x) (42)

which generalizes equation (9). �

We now propose the following theorem.

Theorem 3. For any positive integers α and s, and x ∈ R+, the moments Ms(x; α) are given
by the following summation of GFs:

Ms(x; α) =
∞∑
n=0

nsLα
n(x) =

s∑
l=0

cs,l

α∑
j=0

(−)j
(
α

j

)
δ
(l+j)
+ (x). (43)

Proof. Considering equation (40), multiplying both sides by ns (s a non-negative integer) and
summing over n from 0 to ∞, one gets

Ms(x; α) = (1 − dx)
αMs(x; 0) = (1 − dx)

α

s∑
l=0

cs,lδ
(l)
+ (x)

=
s∑

l=0

cs,l

α∑
j=0

(−)j
(
α

j

)
δ
(l+j)
+ (x). (44)

�

3.1. The factorial moments

The associated Laguerre factorial moment of order s is defined as

Fs(x, α)
.=

∞∑
n=s

n!

(n − s)!
Lα
n(x) (45)

and using relations (44) we get

Fs(x, α) = (1 − dx)
αFs (x, 0) (46)

= s!
s∑

r=0

(−1)s−r

(
s

r

) α∑
j=0

(−1)j
(
α

j

)
δ
(r+j)
+ (x). (47)
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4. The P-distribution for the photon-number state

Writing the complex variable α in the polar form and calling |α|2 = y in equation (2) we
obtain

Qn(y) = exp(−y)yn

n!
and

Pn(y) = 1

n!
exp

(
− d

dy
y

d

dy

)
yn exp(−y). (48)

It is convenient to introduce an auxiliary function,

R(y, β) = exp

(
− d

dy
y

d

dy

)
exp(−yβ) (49)

and since (
− d

dy
y

d

dy

)n

exp(y) = (−1)nn!Ln(y) exp(y)

we can write

R(y, β) =
∞∑
n=0

βnLn(βy) exp(−yβ). (50)

Now we can express equation (48) in terms of equation (50) as

Pn(y) = 1

n!
lim
β→1

(
− ∂

∂β

)n

R(y, β)

= 1

n!
lim
β→1

(
− ∂

∂β

)n
[

exp(−yβ)

∞∑
k=0

βkLk(βy)

] (51)

thus the auxiliary function R(y, β) stands for the GEF of the P-distributions. Using the
definition of GEF (7) we have

exp(−yβ)

∞∑
k=0

βkLk(βy) = G(y, β, 0) =
∞∑
k=0

βkLk(y) (52)

and substituting this result in equation (51) we obtain

Pn(y) = (−1)n
∞∑
k=n

(
k

n

)
Lk(y). (53)

Using equations (35) and (37) we get a direct relation between the P-distributions and the
Laguerre factorial moments,

Pn(y) = (−1)n

n!
Fn(y, 0) (54)

or in terms of the GFs

Pn(y) =
n∑

k=0

(−1)k
(
n

k

)
δ(k)+ (y) = (1 − dy)

nδ+(y) (55)

which simplifies the task of calculating mean values in equation (1) when the state of the field
can be written as ρ̂ = ∑∞

n=0 pn|n〉〈n|, where pn is the probability associated with the state
|n〉. As an illustration, we display the n = 0, 1, 2 P-distributions,

P0(y) = δ+(y) P1(y) = −δ(1)+ (y) + δ+(y) P2(y) = δ(2)+ (y)− 2δ(1)+ (y) + δ+(y).
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5. Conclusions

We have obtained an explicit expression for the Laguerre moments and factorial moments,
for ordinary and associated Laguerre polynomials, written as sums of generalized functions.
We showed that the P-distribution of an electromagnetic field in a photon-number state |n〉 is
proportional to the Laguerre factorial moment of order n and that it acquires a simple form
when expressed as a sum of generalized functions.
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